

TETRAHEDRON LETTERS

Tetrahedron Letters 44 (2003) 7731-7733

Synthesis of natural (–)-hamigeran B

Derrick L. J. Clive* and Jian Wang

Chemistry Department, University of Alberta, Edmonton, Alberta T6G 2G2, Canada Received 8 August 2003; revised 20 August 2003; accepted 21 August 2003

Abstract—Alkylation of lactam **10**, first with iodide **15** and then with MeI, gave mainly (18:1) lactam **18**. This was converted by treatment with *t*-BuLi and then with aqueous base into enone **4**, which was elaborated into (–)-hamigeran B. A key feature of the last part of the synthesis is the use of *t*-BuMe₂Si-groups (as in intermediate **24**) both to direct hydrogenation from the appropriate face and to protect the benzylic C–O bond from hydrogenolysis. © 2003 Elsevier Ltd. All rights reserved.

The hamigerans are a small group of structurally related and unusual natural products that were isolated¹ from a marine sponge. Several hamigerans show in vitro antitumor activity (IC₅₀ values of 8-74 μM), but the most notable characteristic would seem to be the fact that (-)-hamigeran B (1) strongly^{1,2} inhibits both herpes and polio viruses, with only slight cytotoxicity. The absolute stereochemistry shown for 1 was suggested on the basis of structural analogy to another hamigeran for which the assignment was made by X-ray analysis. Synthesis of the hamigerans presents some complex stereochemical problems; these were first solved³ by the Nicolaou group, who described routes to several members of the family, including 1.4 We have recently found⁵ an efficient route to racemic hamigeran B; here we describe the application of our method to the synthesis of the optically pure material (-)-hamigeran B (1), having the indicated absolute configuration.

As reported previously,⁵ our route to (±)-1 is based on enone 3, as a key intermediate. This was prepared by base-induced cyclization of the racemic diketone 2. For synthesis of (–)-hamigeran B, the enantiomer 4 is required; the asymmetric quaternary center would be expected to retain its integrity under the conditions used to elaborate 3.

Our route to 4 is based on Meyers' method,⁶ and required the specific lactam 10 (Scheme 1) and the halide 15 (Scheme 2). The former was readily assembled from aldehyde ester 5⁷ (Scheme 1). Reaction with

Scheme 1. Reagents and conditions: (a) 6, Et₂O, -78°C, 12 h; (b) AcOH, H₂SO₄, Na₂Cr₂O₇, room temperature 10 h, reflux 1 h, ca. 53% from 5; (c) PhMe, add 9, reflux 15 h (Dean–Stark apparatus), 75%.

Keywords: hamigeran B; Meyers' lactam; hydrogenolysis; silyl groups.

^{*} Corresponding author. Tel.: 780-492-3251; fax: 780-492-8231; e-mail: derrick.clive@ualberta.ca

Scheme 2. Reagents and conditions: (a) Ph₃P=CH(OMe), PhMe, 0°C, 2 h, then 10% hydrochloric acid, acetone, reflux, 3.5 h, 99%; (b) DIBAL, CH₂Cl₂, 0°C, 30 min, 90%; (c) MsCl, Et₃N, CH₂Cl₂, 0°C, 30 min; (d) NaI, acetone, reflux, 12 h, 92% from 13; (e) Ph₃P=CH₂, PhMe, 0°C, 2 h, 75%; (f) 9-BBN, THF, 0°C, 30 min, room temperature 12 h, then NaOH, H₂O₂, 0°C, 2 h, 87%.

i-BuMgCl (6) gave lactone 7^8 (which was not obtained pure), and oxidation⁹ of the lactone with Na₂Cr₂O₇ in aqueous AcOH-H₂SO₄ then afforded keto acid 8^{10} in 54% yield from 5. Finally, condensation with (*S*)-valinol¹¹ (9) produced¹² the required lactam 10.

The second component (15) was made as summarized in Scheme 2. Aldehyde 11^{13} was homologated ($11 \rightarrow 12$) by Wittig reaction with $Ph_3P = CH(OMe)$ and acid hydrolysis of the resulting enol ethers (99% over two steps). Reduction (DIBAL-H, 90%) then afforded alcohol 13. The same compound could be obtained in slightly lower yield by Wittig olefination ($11 \rightarrow 16$, 75%), followed by hydroboration (9-BBN, then NaOH, H_2O_2 , 87%). Conversion of alcohol 13 into its mesylate (MsCl, Et_3N) and displacement of the leaving group by iodide (NaI, acetone) gave the required iodide 15 (92% from 13).

Alkylation of **10** with **15** (Scheme 3), which required a prolonged reaction time (36 h at room temperature) gave **17** (as a mixture of stereoisomers), and then *endo*⁶ methylation (12 h at room temperature) generated the quaternary center, affording **18** and **19** in an 18:1 ratio. The diastereoisomers were separated chromatographically, **18** being obtained pure in 90% yield; the other isomer was not obtained free of starting material (**17**). NOE measurements¹⁷ established that the major product of the alkylation has the stereochemistry shown in **18**. Treatment of **18** with *t*-BuLi, under standard conditions,⁶ and in situ hydrolysis, served not only to form the desired tetralone (cf. **2**) but also to

Scheme 3. Reagents and conditions: (a) 2 equiv. LDA, THF, HMPA, -78°C, then add 15, 36 h at room temperature, 79% corrected for recovered 10 (30%), some iodide also recovered; (b) 2 equiv. LDA, THF, HMPA, -78°C, then add MeI, 12 h at room temperature, 95%, 90% yield of 18; (c) t-BuLi, THF, -78°C, 1.75 h, then aqueous Bu₄NH₂PO₄ (1 M), reflux 24 h, then NaOH, EtOH, reflux, 24 h, 90%.

Scheme 4. Reagents and conditions: $Si^* = SiMe_2Bu$ -t. (a) DDQ, dioxane, reflux, 8.5 h, 74%; (b) OsO₄, NMO, 5:1:4:6 CCl₄-water-t-BuOH-acetone, 13 h, 81%; (c) t-BuMe₂SiOSO₂CF₃, CH₂Cl₂, 2,6-lutidine, 6 h, 73%; (d) DIBAL-H, CH₂Cl₂, 0°C to room temperature, 10 h; (e) MsCl, Et₃N, ClCH₂CH₂Cl, room temperature for 30 min, then reflux for 8 h, 84% over two steps; (f) Pd-C, H₂, 39 psi, 1:1 MeOH-hexane, 36 h, 78%; (g) Bu₄NF, THF, reflux, 24 h, 85%; (h) Swern oxidation, 94%; (i) LiCl, DMF, reflux, 20 h, 87%; (j) NBS, i-Pr₂NH, CH₂Cl₂, 3 h, 88%.

effect cyclization (cf. $2\rightarrow 3$), so that 4 was obtained directly (90%). From this point, the procedures developed for the racemic series were applied without change (Scheme 4). Dehydrogenation of 4 with DDQ gave olefin 20 (74%), and this was subjected to vicinal dihydroxylation (OsO₄, NMO, 81%), which occurred anti to the angular methyl group (20 \rightarrow 21). The diol was protected as its bis-tbutyldimethylsilyl ether (BuMe₂SiOSO₂CF₃, 73%) (21→ 22), this choice of protecting groups being essential, as explained previously, 5 in order to control facial selectivity in a later hydrogenation step while preserving the integrity of the benzylic C-O bond, which would otherwise undergo hydrogenolysis. The carbonyl group was then reduced (22→23, DIBAL-H), and dehydration, achieved by mesylation (MsCl, Et₃N) in ClCH₂CH₂Cl at 0°C to reflux temperature, gave diene 24 (84% over two steps). At this point, hydrogenation (Pd-C, H₂, 39 psi, 1:1 MeOH-hexane) delivered 25 (in 78% yield). Desilylation gave the expected diol (25 \rightarrow 26, Bu₄NF, 85%). The compound was examined by HPLC, using a chiral¹⁸ column. Although baseline separation of the corresponding racemic material was not possible, the trace for the optically active sample showed no sign of a shoulder, and we judge the compound to be optically pure, as expected from the fact that 18 was a single isomer derived from optically pure S-valinol. Double Swern oxidation (26 \rightarrow 27, 94%) and demethylation with LiCl in refluxing DMF¹⁹ gave phenol 28 (87%) and, finally, bromination (NBS, *i*-Pr₂NH, 88%)²⁰ produced (-)-hamigeran B (1).²¹

All new compounds, except for 14, 19, and 23, were characterized spectroscopically, including high resolution mass measurement.

Acknowledgements

We thank the Natural Sciences and Engineering Research Council of Canada for financial support, and Dr. C. Diaper for the HPLC measurements.

References

- Wellington, K. D.; Cambie, R. C.; Rutledge, P. S.; Bergquist, P. R. J. Nat. Prod. 2000, 63, 79–85.
- 2. Details of the biological tests have not been published; the antiviral activity is described as follows: Hamigeran B...showed 100% virus inhibition against both the Herpes and Polio viruses, with only slight cytotoxicity throughout the whole well at a concentration of 132 μg per disk.
- (a) Nicolaou, K. C.; Gray, D.; Tae, J. Angew. Chem., Int. Ed. 2001, 40, 3675–3678; (b) Nicolaou, K. C.; Gray, D.; Tae, J. Angew. Chem., Int. Ed. 2001, 40, 3679–3683.
- The synthesis confirms the suggested absolute configuration; synthetic 1 had [α]_D –168° (CHCl₃) (personal communication from Professor K. C. Nicolaou).
- Clive, D. L. J.; Wang, J. Angew. Chem., Int. Ed. 2003, 42, 3406–3409.
- (a) Snyder, L.; Meyers, A. I. J. Org. Chem. 1993, 58, 7507–7515;
 (b) Sandham, D. A.; Meyers, A. I. J. Chem. Soc., Chem. Commun. 1995, 2511–2512.
- Gannett, P. M.; Nagel, D. L.; Reilly, P. J.; Lawson, T.; Sharpe, J.; Toth, B. J. Org. Chem. 1988, 53, 1064–1071.

- 8. Cf. Barluenga, J.; Fernández, J. R.; Rubiera, C.; Yus, M. *J. Chem. Soc.*, *Perkin Trans. 1* **1988**, 3113–3118.
- Cf. McGhie, J. F.; Ross, W. A.; Evans, D.; Tomlin, J. E. J. Chem. Soc. 1962, 350–355.
- Cf. Betancourt de Perez, R. M.; Fuentes, L. M.; Larson, G. L.; Barnes, C. L.; Heeg, M. J. J. Org. Chem. 1986, 51, 2039–2043.
- McKennon, M. J.; Meyers, A. I.; Drauz, K.; Schwarm, M. J. Org. Chem. 1993, 58, 3568–3571.
- 12. Cf. Burgess, L. E.; Meyers, A. I. J. Org. Chem. 1992, 57, 1656–1662.
- 13. Made from 2,5-dimethylphenol by the method of Ref. 14, except that the formyl group was best generated by benzylic bromination (Ref. 15), followed by oxidation with DMSO (Ref. 16).
- 14. Gore, M. P.; Gould, S. J.; Weller, D. D. *J. Org. Chem.* **1992**, *57*, 2774–2783.
- Leed, A. R.; Boettger, S. D.; Ganem, B. J. Org. Chem. 1980, 45, 1098–1106.
- (a) Helms, A.; Heiler, D.; McLendon, G. J. Am. Chem. Soc.
 1992, 114, 6227–6238; (b) Epstein, W. W.; Sweat, F. W. Chem. Rev. 1967, 67, 247–260; (c) Mizutani, T.; Wada, K.; Kitagawa, S. J. Org. Chem. 2000, 65, 6097–6106.
- 17. The C(7) H in **18** syn to the adjacent Me group shows an NOE only to that Me, the other C(7) hydrogen shows NOEs to the CH₂ groups of the ethyl and isobutyl substituents. The C(7) H in **19** syn to the adjacent Me group shows NOEs with that Me and with the CH₂ group of the isobutyl substituent, while the other C(7) hydrogen shows NOEs to the CH₂ groups of the ethyl substituent.
- Chiralcel OD column (0.46×5 cm); eluant 4:1 i-PrOH-hexane; flow rate 1.0 mL/min; detection at 230 nm, temperature 25°C; sample concentration ca. 1 mL/mg in MeOH, injection volume 20 μL.
- Bernard, A. M.; Ghiani, M. R.; Piras, P. P.; Rivoldini, A. Synthesis 1987, 287–288.
- (a) Fujisaki, S.; Eguchi, H.; Omura, A.; Okamoto, A.; Nishida, A. *Bull. Chem. Soc. Jpn.* 1993, 66, 1576–1579; (b) Krohn, K.; Bernhard, S.; Flörke, U.; Hayat, N. *J. Org. Chem.* 2000, 65, 3218–3222.
- 21. Synthetic 1: $[\alpha]_D$ -176.4° (c 0.142, CH₂Cl₂) [Lit.¹ $[\alpha]_D$ -151.5° (c 0.15, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz) δ 0.44 (d, J=6.5 Hz, 3H), 0.53 (d, J=6.6 Hz, 3H), 1.15-1.23(m, 1H), 1.28 (s, 3H), 1.49–1.59 (m, 1H), 1.63–1.72 (m, 1H), 1.75–1.85 (m, 1H), 2.25–2.33 (m, 1H), 2.50 (s, 3H), 2.62 (ddd, J=5.5, 7.7, 13.1 Hz, 1H), 3.38 (d, J=9.2 Hz, 1H),6.82 (s, 1H), 12.61 (s, 1H); ¹³C NMR (CDCl₃, 125.7 MHz) δ 19.7 (q'), 23.3 (q'), 24.3 (q'), 24.4 (q'), 26.7 (t'), 28.1 (d'), 33.8 (t'), 51.3 (d'), 56.2 (q'), 56.9 (s'), 111.5 (s'), 117.2 (s'), 124.2 (d'), 142.7 (s'), 150.2 (s'), 160.8 (s'), 184.4 (s'), 199.0 (s'); exact mass m/z calcd for $C_{18}H_{21}O_3^{79}Br$ 364.06741, found 364.06791. Compound 4: FTIR (CHCl₃, cast) 2957, 1693, 1610 cm⁻¹; $[\alpha]_D = -345.1^{\circ} (c 0.304, CHCl_3)$; ¹H NMR $(CDCl_3, 400 \text{ MHz}) \delta 1.06 \text{ (s, 3H)}, 1.19 \text{ (d, } J = 6.9 \text{ Hz, 3H)},$ 1.37 (d, J=7.0 Hz, 3H), 1.66–1.74 (m, 1H), 2.07 (ddd, J=1.0, 6.9, 13.2 Hz, 1H), 2.20 (d, J=18.5 Hz, 1H), 2.33 (d, J=18.4 Hz, 1H), 2.37 (s, 3H), 2.61-2.71 (m, 1H), 2.86(dd, J=7.0, 18.8 Hz, 1H), 3.12 (septet, J=7.0 Hz, 1H), 3.83(s, 3H), 6.70 (s, 1H), 6.86 (s, 1H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 19.8 (q'), 20.6 (q'), 20.8 (t'), 21.7 (q'), 23.0 (q'), 25.7 (d'), 36.0 (t'), 38.7 (t'), 51.1 (s'), 55.3 (q'), 111.8 (d'), 120.9 (d'), 123.5 (s'), 131.5 (s'), 136.0 (s'), 140.6 (s'), 157.2 (s'), 170.1 (s'), 208.2 (s'); exact mass m/z calcd for $C_{19}H_{24}O_2$ 284.17764, found 284.17735.